Linear colorings of subcubic graphs
نویسندگان
چکیده
A linear coloring of a graph is a proper coloring of the vertices of the graph so that each pair of color classes induce a union of disjoint paths. In this paper, we prove that for every connected graph with maximum degree at most three and every assignment of lists of size four to the vertices of the graph, there exists a linear coloring such that the color of each vertex belongs to the list assigned to that vertex and the neighbors of every degree-two vertex receive different colors, unless the graph is C5 or K3,3. This confirms a conjecture raised by Esperet, Montassier, and Raspaud (L. Esperet, M. Montassier, and A. Raspaud, Linear choosability of graphs, Discrete Math. 308 (2008) 3938–3950). Our proof is constructive and yields a linear-time algorithm to find such a coloring.
منابع مشابه
On list edge-colorings of subcubic graphs
In this paper we study list edge-colorings of graphs with small maximal degree. In particular, we show that simple subcubic graphs are '10/3-edge choosable'. The precise meaning of this statement is that no matter how we prescribe arbitrary lists of three colors on edges of a subgraph H of G such that A(H)~< 2, and prescribe lists of four colors on E(G)\E(H), the subcubic graph G will have an e...
متن کاملAcyclic improper choosability of graphs
We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...
متن کاملPlanarization and Acyclic Colorings of Subcubic Claw-Free Graphs
We study methods of planarizing and acyclically coloring claw-free subcubic graphs. We give a polynomial-time algorithm that, given such a graph G, produces an independent set Q of at most n/6 vertices whose removal from G leaves an induced planar subgraph P (in fact, P has treewidth at most four). We further show the stronger result that in polynomial-time a set of at most n/6 edges can be ide...
متن کاملInjective colorings of planar graphs with few colors
An injective coloring of a graph is a vertex coloring where two vertices have distinct colors if a path of length two exists between them. In this paper some results on injective colorings of planar graphs with few colors are presented. We show that all planar graphs of girth ≥19 and maximum degree ∆ are injectively ∆-colorable. We also show that all planar graphs of girth ≥10 are injectively (...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملColoring Algorithms on Subcubic Graphs
We present efficient algorithms for three coloring problems on subcubic graphs. (A subcubic graph has maximum degree at most three.) The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and appears to be simpler than previous ones. The second algorithm is the first randomized EREW PRAM algorithm for the same problem. It uses O(n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 34 شماره
صفحات -
تاریخ انتشار 2013